A note on cyclic permutation error-correcting codes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Triple-Error-Correcting Cyclic Codes

We consider a class of 3-error-correcting cyclic codes of length 2−1 over the two-element field F2. The generator polynomial of a code of this class has zeroes α, α i +1 and α j , where α is a primitive element of the field F2m . In short, {1, 2+1, 2 +1} refers to the zero set of these codes. Kasami in 1971 and Bracken and Helleseth in 2009, showed that cyclic codes with zeroes {1, 2 + 1, 2 + 1...

متن کامل

Error-correcting codes from permutation groups

We replace the usual setting for error-correcting codes (i.e. vector spaces over finite fields) with that of permutation groups. We give an algorithm which uses a combinatorial structure which we call an uncovering-by-bases, related to covering designs, and construct some examples of these. We also analyse the complexity of the algorithm. We then formulate a conjecture about uncoverings-by-base...

متن کامل

Permutation Groups, Error-Correcting Codes and Uncoverings

Permutation Groups, Error-Correcting Codes and Uncoverings Robert F. Bailey School of Mathematical Sciences Queen Mary, University of London Mile End Road, London E1 4NS United Kingdom [email protected] We replace the traditional setting of error-correcting codes (namely vector spaces over finite fields) with that of permutation groups, using permutations written in list form as the codewor...

متن کامل

A Note on Bounded-Weight Error-Correcting Codes

This paper computationally obtains optimal bounded-weight, binary, error-correcting codes for a variety of distance bounds and dimensions. We compare the sizes of our codes to the sizes of optimal constant-weight, binary, error-correcting codes, and evaluate the di erences.

متن کامل

Constructing error-correcting binary codes using transitive permutation groups

Let A2(n, d) be the maximum size of a binary code of length n and minimum distance d. In this paper we present the following new lower bounds: A2(18, 4) ≥ 5632, A2(21, 4) ≥ 40960, A2(22, 4) ≥ 81920, A2(23, 4) ≥ 163840, A2(24, 4) ≥ 327680, A2(24, 10) ≥ 136, and A2(25, 6) ≥ 17920. The new lower bounds are a result of a systematic computer search over transitive permutation groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information and Control

سال: 1962

ISSN: 0019-9958

DOI: 10.1016/s0019-9958(62)90233-4