A note on cyclic permutation error-correcting codes
نویسندگان
چکیده
منابع مشابه
On the Triple-Error-Correcting Cyclic Codes
We consider a class of 3-error-correcting cyclic codes of length 2−1 over the two-element field F2. The generator polynomial of a code of this class has zeroes α, α i +1 and α j , where α is a primitive element of the field F2m . In short, {1, 2+1, 2 +1} refers to the zero set of these codes. Kasami in 1971 and Bracken and Helleseth in 2009, showed that cyclic codes with zeroes {1, 2 + 1, 2 + 1...
متن کاملError-correcting codes from permutation groups
We replace the usual setting for error-correcting codes (i.e. vector spaces over finite fields) with that of permutation groups. We give an algorithm which uses a combinatorial structure which we call an uncovering-by-bases, related to covering designs, and construct some examples of these. We also analyse the complexity of the algorithm. We then formulate a conjecture about uncoverings-by-base...
متن کاملPermutation Groups, Error-Correcting Codes and Uncoverings
Permutation Groups, Error-Correcting Codes and Uncoverings Robert F. Bailey School of Mathematical Sciences Queen Mary, University of London Mile End Road, London E1 4NS United Kingdom [email protected] We replace the traditional setting of error-correcting codes (namely vector spaces over finite fields) with that of permutation groups, using permutations written in list form as the codewor...
متن کاملA Note on Bounded-Weight Error-Correcting Codes
This paper computationally obtains optimal bounded-weight, binary, error-correcting codes for a variety of distance bounds and dimensions. We compare the sizes of our codes to the sizes of optimal constant-weight, binary, error-correcting codes, and evaluate the di erences.
متن کاملConstructing error-correcting binary codes using transitive permutation groups
Let A2(n, d) be the maximum size of a binary code of length n and minimum distance d. In this paper we present the following new lower bounds: A2(18, 4) ≥ 5632, A2(21, 4) ≥ 40960, A2(22, 4) ≥ 81920, A2(23, 4) ≥ 163840, A2(24, 4) ≥ 327680, A2(24, 10) ≥ 136, and A2(25, 6) ≥ 17920. The new lower bounds are a result of a systematic computer search over transitive permutation groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information and Control
سال: 1962
ISSN: 0019-9958
DOI: 10.1016/s0019-9958(62)90233-4